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Lithium ion batteries are currently a principal power source for

small portable electronics. However, in order to extend their

effective use as large-scale energy storage systems for electric

vehicles and renewable energy, there is an imminent need to

further increase the energy density, power density, and cycle

life while retaining safety and cost at an affordable range. This

fundamentally represents a knowledge and materials challenge

that needs to develop a deeper understanding of electrode and

electrolyte materials as well as their interfaces. Here, we briefly

review recent progress in first-principles computational studies

on the lithiation behavior of anode materials and the structural

and chemical evolution of anode/electrolyte interfaces.
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Introduction
In the past few decades, lithium ion batteries (LIBs) have

attracted considerable attention as power sources for por-

table electronics and electrical vehicles (EVs). They have

several advantages over other secondary battery technolo-

gies such as nickel-cadmium (NiCd) and nickel metal

hydride (NiMH), including high operating voltage, high

energy density, light weight, long cycle life, and zero to low

memory effect. LIBs are currently one of the most com-

monly used rechargeable batteries for small portable elec-

tronic devices [1]. However, in order to extend their

effective use as large-scale energy storage systems for

EVs and renewable energy, there is an imminent need

to further increase the energy density, power density, and

cycle life while retaining safety and cost at an affordable

range. This fundamentally represents a knowledge and

materials challenge. The challenge needs to develop a firm

understanding of the electrode and electrolyte materials
www.sciencedirect.com 
and the structure and chemistry at their interfaces that will

allow us to identify and assess alternative energy storage

strategies, in addition to improvements of existing tech-

nologies [2�].

Recently with advances in computing power and compu-

tational methodology, first-principles based computer

simulations have been applied to evaluate the properties

and performance of potential candidate materials for both

electrodes and electrolytes and better understand the

structure, chemistry, and dynamics at electrode/electro-

lyte interfaces. Computer simulations support and com-

plement experimental studies, and vice versa. They can

provide explanations for experimental observations and

guidelines for synthesizing and characterizing new mate-

rials and developing improved materials systems, while

experimental data are used for validating calculation

results and testing theoretical predictions. The basic

understanding gained from theoretical studies combined

with experiments will be crucial for realizing next-gener-

ation electrical energy storage systems with long life at an

affordable cost. In this article, we briefly review recent

progress in first-principles based atomistic simulations of

lithiation behavior in carbon-based and silicon-based

nanomaterials for LIB anodes and structural and chemical

evolution at anode/electrolyte interfaces.

Anode materials: lithiation processes and
properties
At present, graphite-based materials are commonly used

as anode materials in commercial LIBs due to their long

cycle life, low cost, and abundance, but exhibit relatively

low gravimetric and volumetric specific capacity [3]. The

theoretical capacity of graphite is 372 mAh/g for LiC6 [2�].
Carbon nanostructures including graphene, reduced gra-

phene oxide (rGO) and carbon nanotubes (CNTs), along

with graphene-based composites, have been widely ex-

plored as alternatives to graphite. Graphene-based mate-

rials have been of particular interest because of their high

specific surface area, high electrical conductivity, and

excellent mechanical flexibility. The specific capacities

and charge rates of carbon-based anodes have been stud-

ied using various simulation techniques including density

functional theory (DFT) [4], reactive force field based

molecular dynamics (ReaxFF MD) [5], and grand canon-

ical Monte Carlo [6].

Although the capacity limitations of carbon-based anodes

for use in advanced LIBs need to be overcome, silicon (Si)

has emerged as one of the most promising anode materials
Current Opinion in Chemical Engineering 2016, 13:75–81
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because of its abundance, nontoxicity, desirable electro-

chemical potential to be coupled with high-voltage cath-

ode materials, and more importantly the highest known

specific Li storage capacity (close to 4000 mAh/g for LixSi,

x � 4.4) which is one order of magnitude higher than that

of graphite. However, the practical use of Si as an anode

material is hampered by its large volume expansion

(�400%), causing pulverization, loss of electrical contact,

and consequently early capacity fading; for graphite

anodes, the only structural change is a �12% isotropic

expansion. Considerable efforts have been made to over-

come these problems, for instance, through structural

modifications such as amorphous phases [7,8�] and nano-

structured Si [9,10�], combining Si with carbonaceous

materials (Si–C) [11–13], alloying Si with active/inactive

elements [14,15], and Si oxides (SiOx, x < 2) [16–20].

However, many fundamental aspects regarding the lithia-

tion processes and properties remain unclear since direct

characterization of the complex electrochemical systems

is rather difficult. Over the last few years, the lithiation

mechanisms and electrochemical properties of Si-based

nanomaterials have been extensively explored using first-

principles based atomistic simulations.

DFT calculations were used to evaluate how Li incorpo-

ration affects the electronic structure and bonding nature

of the host Si lattice [21,22,23�]. Upon Li incorporation,

the bonding strengths among neighboring host atoms are

weakened, attributed to the transferred charge from Li.

Because of the repulsive interaction, Li cations tend to
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remain isolated and well dispersed in the Si matrix. With

increasing Li content, the tetrahedrally bonded Si net-

work undergoes disintegration into low-connectivity clus-

ters of various shapes, as shown in Figure 1. Due to the

softening of Si network, the bulk modulus is found to

decrease almost linearly with increasing Li content.

According to DFT calculations, the favorable alloy for-

mation occurs around 71 at.% Li for the crystalline phase

and 60–80 at.% Li for the amorphous phase. The crystal-

line Li–Si alloys are predicted to be about 0.1 eV more

favorable than their amorphous counterparts. However,

lithiated Si beyond the first charge cycle is most likely to

remain in the amorphous phase due to the sizable kinetic

barrier for recrystallization at room temperature. The

differences in the lithiation behavior between Si and

other group IV elements (Ge and Sn) have been also

addressed using DFT-based computational approaches

[24,25].

Si nanostructures can accommodate larger strain and

provide better mechanical integrity because their dimen-

sions would limit the size and propagation of cracks,

which typically initiate the fracture process. It has been

reported that Si nanowires (NWs) and thin films exhibit

excellent capacity retention and rate capability. To better

understand the underlying reasons, DFT studies were

performed to examine the surface effects on the compo-

sition, structural evolution, energetics, and Li mobility in

amorphous LixSi alloys (0.42 � x � 3.57) [26]. When the

Li content is sufficiently low, Li atoms tend to be
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ccompanied by significant volume expansion (�400%).
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Figure 2
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(Upper panels) Temporal microstructure evolution of an [1 1 1] Au-

SiNW in direct contact with Li metal, demonstrating a stagewise

lithiation behavior. (Lower panels) Proposed stagewise lithiation of an

individual Au-SiNW. Stages I & II: axial lithiation of the Au shell with

progressive and slow expansion while the AuSi interface layer may

serve as a facile diffusion path. Stage III: radial lithiation of the Si-core

with uniform and rapid expansion.

Source: Adapted from [35].
enriched in the surface layer for stabilization. As the Li

content is further increased, the near-surface structure

and alloy composition appears to be similar to that in the

bulk, except for the reduction in Si–Si connectivity within

the outermost surface layer. The surface effects are pre-

dicted to be very shallow and only extend to the first couple

of atomic layers. Nonetheless, ab initio MD (AIMD) based

on DFT highlights the improved Li mobility in the near-

surface region. Additionally, Li mobility is predicted to be

very sensitive to the alloy composition, and Li diffusivity is

enhanced by orders of magnitude in the highly lithiated

stage. ReaxFF MD simulations were also employed to

demonstrate the lithiation of Si NWs, which occurs favor-

ably along the (1 1 0) direction [27,28]. Facet-dependent

lithiation behavior in crystalline Si was also examined using

DFT calculations [29�]. It was shown that despite the

anisotropic expansion during lithiation, the strain generat-

ed by the lithiation of the outer layers tends to further

suppress Li diffusion [28].

Si suboxides SiOx (x < 2) have also been recognized as a

promising anode material for LIBs, especially when the O

content is relatively low. It was reported that Si thin films

with homogeneous O incorporation (�13 at% O) in com-

bination with surface oxidation exhibit an excellent ca-

pacity (�2200 mAh/g) with nearly no capacity loss for the

first 120 cycles, and 80% of the initial reversible capacity

was retained after 300 cycles [20]. The lithiation mecha-

nisms of partially oxidized Si has been examined using

first-principles computational approaches [30–33]. From

AIMD simulations, with lithiation amorphous SiO1/3 was

found to gradually disintegrate as Li atoms were accom-

modated by both Si and O atoms [30]. The AIMD study

also predicts the formation of Li6O complexes in which

the four sp3-hybridized orbitals of an isolated O2� anion

directed to the corners of a tetrahedron are surrounded by

six Li cations each sitting over an edge. Li incorporation

in the SiO1/3 matrix was also predicted to be highly

favorable with a capacity comparable to that of fully

lithiated Si (Li:Si ratio � 4). This computational study

highlights the importance of controlling the Si:O ratio as

well as O spatial distribution in order to tailor the desired

lithiation properties. A later study varied the oxygen

content over a much wider range and showed the volume

expansion was inversely related to the O content in the

SiOx system [31]. It was also shown that very thin films of

hydroxylated SiO2 could be lithiated up to 3.48 Li per Si

[32], however the volume expansion was not addressed

due to the 2D nature of the material. SiCO was reported

to exhibit similar lithiation properties to SiO1/3, in that it

does not form Li2O, but exhibits less volume expansion

even than SiO2 [33]. Besides oxygen atom incorporation,

the effects of other chemical impurities on Si lithiation

have been also examined [34].

First-principles computational approaches have also

been utilized to study the lithiation mechanisms and
www.sciencedirect.com 
electrochemical properties of Si-based composites and

coated Si NWs, with particular attention to the effects of

interfaces [36–38]. As shown in Figure 2, a recent com-

bined in situ characterization and first-principles study

demonstrated an intriguing stagewise lithiation behavior

in gold-coated Si nanowires (Au-SiNWs) in which Li

atoms are incorporated preferentially in the Au shell

while the AuSi interface tends to serve as a facile diffu-

sion path along the nanowire axial direction, followed by

the prompt lithiation of the Si core in the radial direction

[35]. Despite the recent theoretical efforts, there is still

lack of fundamental understanding of the lithiation of

Si-based and C-based nanocomposites  as anode materials

in LIBs, warranting further investigations.

Anode/electrolyte interfaces: structural and
chemical evolution
In order for the LIB to safely operate, the electrolyte must

be stable under the reductive and oxidative conditions of

the anode and cathode, respectively, or upon decomposi-

tion, a solid insulating layer can be formed to prevent

further electron transfer. This layer at the electrode/

electrolyte interface has been known as the solid electro-

lyte interphase (SEI) since it was discovered by Peled

and co-workers at the Li metal surface [39]. Since then, a

wide variety of compositions and structures have been
Current Opinion in Chemical Engineering 2016, 13:75–81
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Figure 3

EC reduction rate ( s–1 )

E
C

-  
re

du
ct

io
n 

ra
te

 (
s–1

)

10–8 10–4 100

100

102

104

106

108

1010

104 10 8

O
ne electron regim

e

Two electron regim
e

Current Opinion in Chemical Engineering

The decomposition products of EC are predicted at various electron

transfer rates for both the initial electron received by EC as well as the

second electron received.

Adapted from [47�].
described in the literature, often in conflict with one

another [40]. The ideal SEI layer should be thin, permit

Li+ ion transport at rates comparable to the electrolyte,

and form with minimal electron transfer, thus minimizes

capacity loss [41]. The electrolyte decomposition directly

affects the capacity loss by determining the structure of

the SEI and the requisite amount of sacrificial Li to form

it. Additionally, further capacity losses may occur by

decomposed electrolyte diffusing away from the anode

and not contributing to the passivating film. Next, we will

highlight how molecular simulations have been utilized in

the study of these processes.

Computer simulations have been conducted across a spec-

trum of time and length scales to better understand how

electrode surface, bulk electrolyte, and operating condi-

tions affect the resultant SEI in order to better understand

the origin of these variations. First-principles approaches

based on DFT have been employed to screen electrolyte

additives [42–44] that have lowest unoccupied molecular

orbital (LUMO) energy levels lower than standard elec-

trolyte molecules such as ethylene carbonate (EC) and

dimethyl carbonate (DMC). Additives commonly used

such as fluoroethylene carbonate (FEC) and vinylene

carbonate (VC) [41] exhibit lower LUMO levels, suggest-

ing that they would react before EC and thus could control

SEI formation. However, such quick screening does not

account for the effects of solvation and interface structure

which would be essential in describing accurately the

structural and chemical evolution at the interface. For

example, vinylethylene carbonate (VEC) also has a LUMO

energy lower than EC, but has been found to not form a

stable SEI layer leading to large capacity fades [45].

AIMD simulations have been used to a great extent in an

attempt to identify the reaction pathways involved in

electrolyte decomposition at the anode. For EC at a

graphitic carbon surface, it has been shown that two-

electron pathways yielding either Li2CO3 or C2H4O2
2�

tend to be preferred [46], despite the expectation of

lithium ethylene dicarbonate (Li2EDC) as the primary

SEI component [41]. Later, based on rigorous first-prin-

ciples calculations, Leung suggested that the electrolyte

decomposition pathway may depend upon electron trans-

fer rate (Figure 3), while demonstrating the possibility of

Li2EDC or lithium butylene dicarbonate (Li2BDC) for-

mation at slow electron transfer rates [47�]. A later AIMD

study utilized thermodynamic integration techniques to

establish an absolute potential scale to study the effects of

voltage on electrochemical processes at a LiC6/electrolyte

interface [48]. Electrolyte decomposition in this study

was found to be slower than the timescale utilized at

potentials where SEI formation has been observed to

begin experimentally.

The decomposition pathway of EC at a liquid Li metal

anode has been also evaluated using AIMD simulations,
Current Opinion in Chemical Engineering 2016, 13:75–81 
showing a preference toward C2H4O2
2� formation.

ReaxFF MD simulations have been performed to inves-

tigate decomposition of multiple electrolyte mixtures at a

Li metal surface at various temperatures, demonstrating

the formation of primarily Li2O and Li2CO3 at the

electrode/electrolyte interface [49].

Although there has been a push in the community to

move toward Si anodes, the electrolyte decomposition at

the Si surface has begun to be studied. The effects of

lithiation and surface termination on the reduction of EC

were studied [50]; the results have been found to signifi-

cantly differ from decomposition on Si clusters with a

single Li+ adsorbed, as predicted by DFT studies [51�].
The reduction of FEC, a common additive, was also

studied at Si surfaces [52]. Recently, the effects of other

additives and co-solvents were studied as well [53]. The

importance of explicit description of the Si/electrolyte

interface was also highlighted by demonstrating the dif-

ferent reduction pathways for VC between in the electro-

lyte [54] and at the interface [52]. Alternatively, room

temperature ionic liquid based electrolytes have also

been shown to undergo similar decomposition pathways

at a Si surface [55].

A large portion of the literature on SEI details the

reductive decomposition of the electrolyte, however it

is also important to study the structural evolution at the

interface. Classical MD has been largely employed to

examine the structural reorganization of organic electro-

lytes and SEI components near the electrode or SEI layer.

For instance, Jorn et al. [56] studied the structure of the
www.sciencedirect.com
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electrode/SEI/electrolyte interface through analysis of

density distributions of EC, Li+ and PF6
� in the presence

and absence of the SEI under applied voltages. The

interfacial structure and dynamics of SEI components,

such as dilithium ethylene dicarbonate (Li2EDC) and

dilithium butylene dicarbonate (Li2BDC), in contact

with a mixed carbonate electrolyte, EC:DMC (3:7)

doped with LiPF6 were also evaluated using MD simu-

lations with the many-body polarizable APPLE&P

force field [57]. There was also an attempt to directly

simulate electrolyte decomposition and SEI formation

for different electrolytes and temperatures using

ReaxFF MD simulations [49]. There still exists a gap

in the literature currently in regards to the electrolyte

structure near the electrode  before its decomposition

and how this structure changes, not only with electrolyte

composition, but with structural and operating factors

such as applied voltage, temperature, and electrode

surface chemistry.

The electrolyte decomposition products must be insolu-

ble in the bulk electrolyte and adsorb onto the electrode

surface for the SEI to form. To gain additional under-

standing of this process, classical MD simulations have

been utilized to show the relative solubilities of various

products in EC, DMC, and a mixture of the two [58]. A

more recent AIMD paper expresses that perhaps the

desolvation and adsorption of decomposition products

occurs through a collective process following aggregation

near the electrode surface [59�]. In the case of interme-

diate species neither adsorbing, not reacting to comple-

tion, the resulting charge loss is partly responsible for

coulombic inefficiency. To better understand this, the

fate of radical intermediate species must be further stud-

ied. ReaxFF MD simulations have been also utilized to

discern the fate of EC� radical ions in solution at various

concentrations. Li2BDC was shown to be more favorable

than Li2EDC [60], despite the latter being a frequently

observed SEI component. A recent DFT study also

suggests that additives are critical to preventing further

reactions beyond SEI formation [61].

Li+ ion transport through the SEI layer greatly impacts

the cell impedance and thus the overpotential required in

charging. The SEI is often assumed to be crystalline in

nature. Classical MD simulations have been performed to

evaluate Li transport rates in organic crystalline Li2EDC

[62], while DFT calculations utilizing the nudged elastic

band (NEB) method have been conducted to predict

transport rates in often-observed organic and inorganic

crystalline SEI components [63,64] as well as potential

artificial SEI layers [65,66] that could possibly be formed

to limit capacity loss. There is still a large disconnect

between the decomposition of electrolyte and the forma-

tion of a crystalline SEI layer which needs to be further

investigated. Using enhanced sampling techniques, such

as the NEB method, the first-principles computational
www.sciencedirect.com 
approach can reliably predict relevant transport barriers

responsible for the rate limitations in charging of LIBs.

Summary and outlook
Over the last decade, there has been significant progress

in first-principles modeling of anode materials and anode/

electrolyte interfaces by virtue of rapid advances in

computing power and computational methodology.

First-principles simulations have been extensively used

to explore the lithiation mechanisms of carbon-based and

silicon-based nanomaterials for LIB anodes as well as the

behavior of reductive decomposition of carbonate-based

solvent molecules during SEI formation on Li metal,

graphite, or Si-based anodes. First-principles based force

fields have also been developed for use in large-scale MD

simulations to examine the lithiation/delithiation process

in anode materials and the structural and chemical evo-

lution at anode/electrolyte interfaces. Despite recent

progress, there is still considerable lack of fundamental

investigations on the formation and growth of SEI layers

and the lithiation behavior of Si-based nanocomposites

such as carbon scaffold Si nanoparticles and Si/metal

oxide composites. First-principles based computer simu-

lations will continuously play a key role in the detailed

mechanistic study of electrode materials and electrode/

electrolyte interfaces. The improved understanding

gained from computational studies combined with

experiments will be crucial for realizing next-generation

electrical energy storage systems with long life at an

affordable cost.
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